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Molecular replacement (MR) is a well established method for phasing of X-ray

diffraction patterns for crystals composed of biological macromolecules of

known chemical structure but unknown conformation. In MR, the starting point

is known structural domains that are presumed to be similar in shape to those in

the macromolecular structure which is to be determined. A search is then

performed over positions and orientations of the known domains within a

model of the crystallographic asymmetric unit so as to best match a computed

diffraction pattern with experimental data. Unlike continuous rigid-body

motions in Euclidean space and the discrete crystallographic space groups, the

set of motions over which molecular replacement searches are performed does

not form a group under the operation of composition, which is shown here to

lack the associative property. However, the set of rigid-body motions in the

asymmetric unit forms another mathematical structure called a quasigroup,

which can be identified with right-coset spaces of the full group of rigid-body

motions with respect to the chiral space group of the macromolecular crystal.

The algebraic properties of this space of motions are articulated here.

1. Introduction

Over the past half century, X-ray crystallography has been a

wildly successful tool for obtaining structures of biological

macromolecules. Aside from finding conditions under which

crystals will grow (which largely has been reduced to auto-

mated robotic searches) the major hurdle in determining a

three-dimensional structure when using X-ray crystallography

is that of phasing the diffraction pattern. And while experi-

mental methods such as multiple isomorphous replacement

(MIR) and multiple-wavelength anomalous dispersion

(MAD) phasing are often used, if the macromolecular system

under study is known a priori to consist of components that

are similar in structure to solved structures, then the phasing

problem can be reduced to a purely computational one, known

as a molecular replacement (MR) search. In this article, six-

dimensional MR searches for single-domain structures are

formulated using the language and tools of modern mathe-

matics. A coherent mathematical description of the MR search

space is presented. It is also shown that more generally the

6N-dimensional search space that results for a multi-domain

macromolecule or complex constructed from N rigid parts is

endowed with a binary operation. This operation is shown not

to be associative, and therefore the resulting space is not a

group. However, as will be proven here, the result is a math-

ematical object called a quasigroup.

This concept can be understood graphically at this stage

without any notation or formulas. Consider a planar rigid-

body transformation applied to the particular gray letter ‘Q’ in

the upper-right cell in Fig. 1. The transformation moves that

‘Q’ from its original (gray) state to a new (black) state. The

change in position resulting from the translational part of the

transformation can be described by a vector originating at the

center of the gray ‘Q’ and terminating at the center of the

black one. In this example the translation vector points up and

to the right. The transformation also results in an orientational

change, which in this case is a counterclockwise rotation by

about 25�. If the other gray ‘Q’s are also moved from their

initial state in an analogous way so that the relative motion

between each corresponding pair of gray and black ‘Q’s is the

same, the result will be that shown in Fig. 1, which represents

Figure 1
Rigid-body motion of an object in a crystal with P1 space group.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=zm5082&bbid=BB45


four cells of an infinite crystal. This is the same as what would

result by starting with the cell in the upper right together with

both of its ‘Q’s, and treating these three objects as a single

rigid unit that is then translated without rotation and copied so

as to form a crystal. The resulting set of black ‘Q’s is not the

same as would have resulted from the single rigid-body motion

of all of the gray ‘Q’s as one infinite rigid unit.

In the scenario in Fig. 1 there is exactly one ‘Q’ in each unit

cell before the motion and exactly one in each cell after the

motion, where ‘being in the unit cell’ is taken here to mean

that the center point of a ‘Q’ is inside the unit cell. It just so

happens in the present example that the same ‘Q’ is inside the

same cell before and after this particular motion. But this will

not always be the case. Indeed, if each new ‘Q’ is moved from

its current position and orientation by exactly the same rela-

tive motion as before (i.e. if the relative motion in Fig. 1 is

applied twice), the result will be the black ‘Q’ in Fig. 2. In this

figure the lightest gray color denotes the original position and

orientation, the middle-gray ‘Q’ that is sitting to the upper

right of each light one is the same as the black one in Fig. 1,

and now the new black one has moved up and to the right of

this middle-gray one. This is the result of two concatenated

transformations applied to each ‘Q’. Note that now each black

‘Q’ has moved from its original unit cell into an adjacent one.

But if we focus on an individual unit cell, we can forget about

the version that has left the cell, and replace it with the one

that has entered from another cell. In so doing, the set of

continuous rigid-body motions within a crystal becomes a

finite-volume object, unlike continuous motions in Euclidean

space. This finite-volume object is what is referred to here

as a motion space, which is different from the motion

group consisting of all isometries of the Euclidean plane that

preserve handedness.

Each element of a motion space can be inverted. But this

inverse is not simply the inverse of the motion in Fig. 1.

Applying the inverse of each of the rigid-body transformations

for each ‘Q’ that resulted in Fig. 1 is equivalent to moving each

light-gray ‘Q’ in Fig. 3 to the position and orientation of the

new black ones to the lower left. This does not keep the center

of the resulting ‘Q’ in the same unit cell, even though the

original motion did. But again, we can forget about the version

of the ‘Q’ that has left the unit cell under this motion, and

replace it with the one that enters from an adjacent cell.

If we were doing this all without rotating, the result simply

would be the torus, which is a quotient of the group of

Euclidean translations by primitive lattice translations. But

because orientations are also involved, the result is more

complicated. The space of motions within each unit cell is still

a coset space (in this case, of the group of rigid-body motions

by a chiral crystallographic space group, due to the lack of

symmetry of ‘Q’ under reflections), and such motions can be

composed. But unlike a group, this set of motions is non-

associative as will be shown later in the paper in numerical

examples. This non-associativity makes these spaces of

motions a mathematical object called a quasigroup.

The concept of quasigroups has existed in the mathematics

literature for more than half a century (see e.g. Bruck, 1958),

and remains a topic of interest today (Pflugfelder, 1990;

Sabinin, 1999; Smith, 2006; Vasantha Kandasamy, 2002; Nagy

& Strambach, 2002). Whereas the advanced mathematical

concept of a groupoid has been connected to problems in

crystallography (Weinstein, 1996), to the the author’s knowl-

edge connections between quasigroups and crystallography

have not been made before. Herein a case is made that a

special kind of quasigroup (i.e. a motion space) is the natural

algebraic structure to describe rigid-body motions within the

crystallographic asymmetric unit. Therefore, quasigroups and

functions whose arguments are elements of a quasigroup are

the proper mathematical objects for articulating molecular

replacement problems. Indeed, the quasigroups shown here to

be relevant in crystallography have properties above and

beyond those in the standard theory. In particular, the

quasigroups presented here have an identity and possess a

continuum of elements similar to a Lie group.1
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Figure 2
Concatenation of the motion in Fig. 1 with itself.

Figure 3
The inverse of the motion in Fig. 1.

1 In the mathematics literature a quasigroup with identity is called a loop
(Sabinin, 1999; Smith, 2006; Vasantha Kandasamy, 2002), but since the word
‘loop’ is used in biological contexts to mean a physical serial polymer-like
structure with constrained ends, the word ‘quasigroup’ will be used here
instead of mathematical ‘loop’.



1.1. Literature review

The crystallographic space groups have been cataloged in

great detail in the crystallography literature. For example,

summaries can be found in Bradley & Cracknell (2009), Burns

& Glazer (1990), Hahn (2002), Hammond (1997), Julian

(2008), Janssen (1973), Ladd (1989), Lockwood & MacMillan

(1978), Evarestov & Smirnov (1993) and Aroyo et al., (2010),

as well as in various online resources. Treatments of space-

group symmetry from the perspective of pure mathematicians

can be found in Conway et al. (2001), Engel (1986), Hilton

(1963), Iversen (1990), Miller (1972), Nespolo (2008) and

Senechal (1980).

Of the 230 possible space groups, only 65 are possible for

biological macromolecular crystals (i.e. the chiral/proper

ones). The reason for this is that biological macromolecules

such as proteins and nucleic acids are composed of constituent

parts that have handedness and directionality (e.g. amino acids

and nucleic acids, respectively, have C–N and 50–30 direction-

ality). This is discussed in greater detail in McPherson (2003),

Rhodes (2000), Lattman & Loll (2008) and Rupp (2010). Of

these 65, some occur much more frequently than others

and these are typically non-symmorphic space groups. For

example, more than a quarter of all proteins crystallized to

date have P212121 symmetry, and the three most commonly

occurring symmetry groups represent approximately half of all

macromolecular crystals (Rupp, 2010; Wukovitz & Yeates,

1995).

The number of proteins in a unit cell, the space group � and

aspect ratios of the unit cell can be taken as known inputs in

MR computations, since they are all provided by experimental

observation. From homology modeling, it is often possible to

have reliable estimates of the shape of each domain in a multi-

domain protein. What remains unknown are the relative

positions and orientations of the domains within each protein

and the overall position and orientation of the protein mole-

cules within the unit cell.

Once these are known, a model of the unit cell can be

constructed and used as an initial phasing model that can be

combined with the X-ray diffraction data. This is, in essence,

the molecular replacement approach that is now more than

half a century old (Rossmann & Blow, 1962; Hirshfeld, 1968;

Lattman & Love, 1970; Rossmann, 2001). Many powerful

software packages for MR include those described in Navaza

(1994), Collaborative Computational Project, Number 4

(1994), Vagin & Teplyakov (2010) and Caliandro et al. (2009).

Typically these perform rotation searches first, followed by

translation searches.

Recently, full six-degrees-of-freedom rigid-body searches

and 6N degree-of-freedom (DOF) multi-rigid-body searches

have been investigated (Jogl et al., 2001; Sheriff et al., 1999;

Jamrog et al., 2003; Jeong et al., 2006) where N is the number of

domains in each molecule or complex. These methods have

the appeal that the false peaks that result when searching the

rotation and translation functions separately can be reduced.

This paper analyzes the mathematical structure of these search

spaces and examines what happens when rigid-body motions

in crystallographic environments are concatenated. It is shown

that unlike the symmetry operations of the crystal lattice, or

rigid-body motions in Euclidean space, the set of motions of a

domain (or collection of domains) within a crystallographic

unit cell (or asymmetric unit) with faces ‘glued’ in an appro-

priate way does not form a group. Rather, it has a quasigroup

structure lacking the associative property.

1.2. Overview

The remainder of this paper (which is the first in a planned

series) makes the connection between molecular replacement

and the algebraic properties of quasigroups. x2 provides a brief

review of notation and properties of continuous rigid-body

motions and crystallographic symmetry. x3 articulates MR

problems in modern mathematical terminology. x4 explains

why quasigroups are the appropriate algebraic structures to

use for macromolecular MR problems, and derives some new

properties of the concrete quasigroup structures that arise in

MR applications. Examples illustrate the lack of associativity.

x5 focuses on how the quasigroups of motions defined earlier

act on asymmetric units. x6 illustrates the non-uniqueness

of fundamental domains and constructs mappings between

different choices, some of which can be called quasigroup

isomorphisms. x7 develops the special algebraic relations

associated with projections from quasigroups to the asym-

metric units on which they act. x8 returns to MR applications

and illustrates several ways in which the algebraic construc-

tions developed in the paper can be used to describe allowable

motions of macromolecular domains while remaining consis-

tent with constraints imposed by the crystal structure. Future

papers in this series will address the geometric and topological

properties of these motion spaces, and connections with

harmonic analysis.

2. The mathematics of continuous and discrete rigid-
body motions

This section establishes common notation and reviews the

properties of continuous and discrete motions.

2.1. Rigid-body motions and semi-direct products

The special Euclidean group, SEðnÞ, consists of all rotation–

translation pairs g ¼ ðR; tÞ where R is an n� n rotation

matrix, the set of which forms the special orthogonal group

SOðnÞ, and t 2 Rn is a translation vector. The group operation

for this group is defined for every g1; g2 2 SEðnÞ as

g1 � g2 ¼ ðR1; t1Þ � ðR2; t2Þ ¼ ðR1R2;R1t2 þ t1Þ: ð1Þ

From this it is easy to calculate that for any g 2 SEðnÞ,

g�1 � g ¼ g � g�1 ¼ e and g � e ¼ e � g ¼ g where

g�1
¼ ðRT;�RTtÞ and e ¼ ðI; 0Þ: ð2Þ

Here I is the n� n identity matrix and 0 is the null translation

vector.

The group law for SEðnÞ in equation (1) is that of a semi-

direct product, so that
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SEðnÞ ¼ ðRn;þÞ � SOðnÞ: ð3Þ

G ¼ SEðnÞ is a Lie group, i.e. it consists of a continuum of

elements and satisfies other formal properties described in

Chirikjian & Kyatkin (2000). Two Lie subgroups of G are

T ¼ fðI; tÞ j t 2 Xg and R ¼ fðR; 0Þ j R 2 SOðnÞg: ð4Þ

These are the continuous groups of pure translations and pure

rotations. The group of pure translations is isomorphic withRn

with the operation of addition, i.e. T ffi ðRn;þÞ, and the group

of pure rotations is isomorphic with SOðnÞ, i.e. R ffi SOðnÞ,

where the operation for SOðnÞ is matrix multiplication. These

subgroups are special because any element g 2 SEðnÞ can be

written as a product of pure translations and rotations as

g ¼ ðI; tÞ � ðR; 0Þ.

Let � denote the chiral group of discrete symmetries of a

macromolecular crystal. �, though discrete, always has an

infinite number of elements and can be viewed as a proper

subgroup of the group of rigid-body motions, G ¼ SEðnÞ,

which is written as �<G, with < denoting proper subgroup.

2.2. Actions, subgroups and coset spaces

The group G ¼ SEðnÞ acts on the set X ¼ Rn as

g � x ¼ Rxþ t ð5Þ

for all position vectors x 2 X. Any such position can be

expressed as x ¼
Pn

i¼1 xiei where feig is the natural basis for

R
n consisting of orthogonal unit vectors. Alternatively, in

crystallographic applications it can be more convenient to

write x ¼
Pn

i¼1 x0iai where faig are the directions from one

lattice point to the corresponding one in an adjacent primitive

unit cell. Sweeping through values 0 � x0i � 1 defines a

primitive crystallographic unit cell. Whereas x denotes any of

a continuum of positions, the set of all discrete translations of

the form tm ¼
Pn

i¼1 miai for all m 2 Zn forms the Bravais

lattice, L, and for any two fixed m;m0 2 Zn, tm þ tm0 ¼ tmþm0 is

also in the lattice. The lattice together with addition is the

group of primitive lattice translations, T ¼ ðL;þÞ ffi ðZn;þÞ,
which is infinite but discrete. � is the whole group of crystal-

lographic symmetry operations that includes both lattice

translations and a chiral point group as subgroups. The space

group of a Bravais lattice is a semi-direct product and can be

thought of as a discrete version of SEðnÞ. However, a crystal

consists of both a Bravais lattice and a motif repeated inside

the unit cells. This changes the symmetry, by possibly

removing some rotational symmetry operations and possibly

introducing some discrete screw displacements.

In general, given any proper subgroup H contained in a

group G (which is denoted as H<G), including (but not

limited to) the case when H is T , R or �, and G is SEðnÞ, left

and right cosets are defined, respectively, as

gH ¼ fg � h j h 2 Hg and Hg ¼ fh � g j h 2 Hg:

It is well known that a group is divided into disjoint left (or

right) cosets, and that only for a normal subgroup, N, is it the

case that gN ¼ Ng for all g 2 G. More generally, the left- and

right-coset (or quotient) spaces that contain all left or right

cosets are denoted, respectively, as G=H and H\G. Normal

subgroups are special because G=N ¼ N\G and a natural

group operation, 	, can be defined so that ðG=N;	Þ is also a

group. For example, T in equation (4) is a normal subgroup of

G, meaning that for all h 2 G and t 2 T , h � t � h�1 2 T . This

condition is written as hT h�1 
 T , and in fact it can be shown

that hT h�1 ¼ T .

2.3. Unit cells as fundamental domains of orbits

A space, X , on which a group, G, acts can be divided into

disjoint orbits. The set of all of these orbits is denoted as G\X,

as this is a kind of quotient space.2 An immediate crystal-

lographic consequence of these definitions is that if � is the

full chiral symmetry group of a crystal and X ¼ Rn, then �\X

can be identified with the asymmetric unit. Moreover, if T<�
is the largest discrete translation group of the crystal (and so

T < T also), then T\X can be identified with the primitive unit

cell, and so too can the coset space T\T . Since T is a normal

subgroup of T , the unit cell is actually endowed with a group

structure, namely periodic addition. For this reason, a unit cell,

U, in n-dimensional space with its opposing faces glued is

equivalent to an n-dimensional torus,

T\T ffi U ffi Tn: ð6Þ

This can be identified with the box ½0; 1�n � Rn with the

operation of addition xþ y modZn for all x; y 2 ½0; 1�n. This

fact is implicitly and extensively used in crystallography to

expand the density in a unit cell in terms of Fourier series.

Furthermore, the translational motion of the contents of a unit

cell is easy to handle within the framework of classical

mathematics. However, if one wishes to focus attention in MR

searches on the asymmetric unit �\X , then there is no asso-

ciated group operation. An advantage of using �\X is that it is

smaller (in terms of volume) than T\X , and therefore when

discretizing this space for numerical computations the number

of grid points required for a given resolution will be smaller.

Furthermore, even in the case when the whole unit cell is

considered, though periodic translations are handled in an

effortless way within the context of classical Fourier analysis,

rotations of the rigid contents within a unit cell of a crystal are

somewhat problematic within the classical framework, which

provides the motivation for the current work.

The set of orbits �\X can be viewed as a region in X,

denoted as F�\X (or F for short when the connection between

F and �\X is clear from the context). Here F stands for

‘fundamental domain’. A point in F�\X is denoted as ½x�, and

serves as a representative for each orbit generated by the

application of all elements of � to a particular x 2 X. Each

point x 2 X can be thought of as x ¼ � � ½x� for a unique � 2 �
and ½x� 2 F�\X , where FT\X and F�\X can be chosen as the unit

cell and the asymmetric unit, respectively.
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2 Some books denote this as X=G, but to be consistent with the definition of
action in equation (5), in which g acts on the left of x, it makes more sense to
write G\X in analogy with the way that H\G preserves the order of h � g in the
definition of the coset Hg 2 H\G.



3. A mathematical formulation of molecular
replacement

Typically MR searches are performed by reducing the

problem of first finding the orientation/rotation of a homo-

logous component, followed by a translational/positional

search. This method works extremely well for single-domain

proteins because the signal-to-noise ratio (SNR) is very high.

However, in crystals composed of complex multi-body

proteins or complexes, the SNR can be quite low.3

3.1. Crystallographic symmetry in molecular replacement

Suppose that a single copy of a macromolecular structure of

interest has an electron density �ðxÞ. That is, there exists a

function � : X ! R
0. This says nothing more than that the

density is non-negative. This function may be constructed by

adding densities of individual domains within the structure.

And if thermal motions are taken into account, each of these

component densities can be motionally blurred as described in

Chirikjian (2010).

This means that the total electron density of the non-solvent

part of the crystal will be4

��\XðxÞ ¼
: P
�2�

�ð��1 � xÞ: ð7Þ

The symmetry group, �, and number of copies of the molecule

in a given unit cell can both be estimated directly from the

experimental data (Matthews, 1968). Note that such a function

��\XðxÞ is ‘�-periodic’ in the sense that for any �0 2 �,

��\Xð�
�1
0 � xÞ ¼ ��\XðxÞ: ð8Þ

Now suppose that before constructing symmetry-related

copies of the density �ðxÞ, we first move it by an arbitrary

g 2 G. The result will be

�ðx; gÞ ¼
:
�ðg�1

� xÞ ¼ �ðg�1
� x; eÞ:

There should be no confusion between the single-argument

and two-argument versions of the density function; they are

actually different functions which are easily distinguished by

their arguments. They share the same name ‘�’ to avoid a

proliferation of notation.

It is easy to see that for any fixed g 2 G

��\Xðx; gÞ ¼
: P
�2�

�ð��1 � x; gÞ ¼
P
�2�

�½g�1 � ð��1 � xÞ; e�

¼
P
�2�

�½ð� � gÞ
�1
� x; e� ¼

P
�2�

�ðx; � � gÞ: ð9Þ

The g in each of these expressions can be taken to be in G, but

this is wasteful because G extends to infinity, and the same

result appears whether g or �0 � g is used for any �0 2 �.

Therefore, the rigid-body motions of interest are those that

can be taken one from each coset �g 2 �\G. In contrast to an

element of G, which is denoted as g, an element of the

fundamental region F�\G corresponding to the coset space �\G

is denoted as ½g�r . In other words, ½g�r is an element of F�\G as

well as of �\G. The notation is similar to ½x� used earlier, but

unlike spaces of orbits, since it is possible to have both left-

coset spaces and right-coset spaces, the subscript r is used to

restrict the discussion to the ‘right’ case, as well as to distin-

guish ½��r from ½��.

There is never any need to consider g outside of F�\G � G

since

��\Xðx; gÞ ¼ ��\Xðx; ½g�rÞ; ð10Þ

which follows from equation (9) and the invariance of this

sum under shifts of the form � ! � � �0. Moreover, since

��\Xðx; gÞ is �-periodic in x, there is no need to consider any x

outside of F�\X, since

��\Xðx; gÞ ¼ ��\Xð½x�; gÞ: ð11Þ

In an X-ray diffraction experiment for a single-domain

protein, �ðxÞ is not obtained directly. Rather, the magnitude

of the Fourier transform of ��\Xðx; gÞ is obtained with g

held fixed by the physics of the crystal. In general, if

fai j i ¼ 1; . . . ; ng are the vectors describing lattice directions,

so that each element of the group T consists of translations of

the form

tðk1; k2; . . . ; knÞ ¼
Pn
j¼1

kjaj 2 T;

then the classical Fourier series coefficients for ��\Xðx; gÞ

(which for each fixed g 2 G is a function on T\T ) are denoted

as �̂��\Xðk; gÞ. There is duality between the Fourier expansions

for T and for the unit cell U ffi T\T , and likewise ÛU ffi Zn is

the unitary dual of U.

A goal of molecular replacement is then to find the specific

½g�r 2 F�\G such that �̂��\X ðk; gÞ
�� �� best matches with the

diffraction pattern, P̂PðkÞ, which is provided from X-ray crys-

tallography experiments.5 In other words, a fundamental goal

of molecular replacement is to minimize a cost function of the

form

Cð½g�rÞ ¼
P
k2ÛU

d j�̂��\Xðk; gÞj; P̂PðkÞ
� �

ð12Þ

where dð�; �Þ is some measure of distance, discrepancy or

distortion between densities or intensities. For example,

d1ðx; yÞ ¼ jx� yj, d2ðx; yÞ ¼ jx� yj2 or dKLðx; yÞ ¼ x logðx=yÞ.

Of these, d2ðx; yÞ is by far the most popular because it lends

itself to computation in either Fourier space or real space via

Parseval’s equality. Less detailed versions of equation (12) use

�̂�ðg�1 � kÞ in place of �̂��\Xðk; gÞ, in which case the translational

part of g shows up as a phase factor that disappears when

computing magnitude.

No matter what the choice of dð�; �Þ, the cost functions

Cð½g�rÞ in equation (12) inherit the symmetry of ��\XðxÞ in

equation (8) in the sense that
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3 It should be pointed out that the ‘noise’ here is not noise in the true sense,
but rather results from false peaks in rotational correlations arising from
restricting the search from a high-dimensional space (e.g. 6N for a system
composed of N rigid bodies) to an initial three-dimensional orientational
search.
4 Though this is an infinite sum, each �ð��1 � xÞ has compact support because
each protein domain is a finite body, and so convergence is not an issue. 5 Here g and ½g�r can be used interchangeably because of equation (10).



Cð½g�rÞ ¼ Cð� � ½g�rÞ 8 � 2 � ð13Þ

when Cð�Þ is extended to take values in G. This makes them

functions on �\G (or, equivalently, F�\G), in analogy with the

way that a periodic function on the real line can be viewed as a

function on the circle.

Though the discussion here treats translations and rotations

together, the standard approach in molecular replacement is

to break up the right-hand side of equation (12) into a part

that depends only on the rotational part of ½g�r, and then a

term that depends on a combination of the translational and

rotational parts of ½g�r. This second term is discarded and a

pure rotational search is performed. Computationally this is

advantageous because the dimensions of the search space are

reduced from 6 to 3, but since the term that is thrown away

depends on the rotational part of ½g�r, this introduces a larger

degree of ‘noise’ into the cost function, thereby introducing

spurious false peaks in the rotation function that would

otherwise not need to be investigated.

3.2. Visualizing FC\G in the case when C = P1

In this section an example is used to illustrate F�\G

graphically. Let gðx; y; �Þ be shorthand for ðRð�Þ; ½x; y�TÞ 2

SEð2Þ where Rð�Þ is a counterclockwise rotation around the z

axis by angle � and the composition of two motions is defined
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Figure 4
The space of motions, P1\SEð2Þ ffi ðP1\R2

Þ � SOð2Þ, for a body in the planar P1 unit cell: (a) origin of the coordinate axes in the lower-left corner; (b)
origin of the coordinate axes in the center.



in equation (1). When � ¼ P1, the x and y components of

�\R2 span a finite range, which we can take to be a unit square

in the plane. Then F�\G can be viewed as a box, with the

vertical direction denoting the rotation angle �. The height of

the top horizontal face of the box relative to its bottom is

defined by � ¼ 2� radians. All opposing faces of the box are

glued directly to each other with corresponding points defined

by the intersection of lines parallel to coordinate axes and the

faces.

This is illustrated in Fig. 4 in which the points on opposing

faces in each box are identified. This means that in

Fig. 4(a) the following sets each describe the same point:

fðx; 0; �Þ; ðx; 1; �Þg, fð0; y; �Þ; ð1; y; �Þg, fðx; y; 0Þ; ðx; y; 2�Þg
where ðx; y; �Þ 2 ½0; 1� � ½0; 1� � ½0; 2��. Similarly, in

Fig. 4(b) fðx;�1=2; �Þ; ðx; 1=2; �Þg, fð�1=2; y; �Þ; ð1=2; y; �Þg,
fðx; y;��Þ; ðx; y; �Þg where ðx; y; �Þ 2 ½�1=2; 1=2�

�½�1=2; 1=2� � ½��; ��. As a consequence, all eight of the

extreme vertices in each figure correspond to the same point.

If we choose F ffi P1\SEð2Þ as in Fig. 4(a), it becomes

clear that ½g�r 2 F does not mean that ð½g�rÞ
�1
2 F. For

example, taking g ¼ gð1=2; 1=2; 0Þ, then ½g�r ¼ g and

ð½g�rÞ
�1
¼ gð�1=2;�1=2; 0Þ =2 F. However, ð½g�rÞ

�1
�r ¼ ½g

�1�r
¼ gð1=2; 1=2; 0Þ ¼ ½g�r 2 F.

Fig. 4(b) is a definition of F that has better closure

properties under inversion. For example, ½gð1=2; 0; 0Þ��1

¼ gð�1=2; 0; 0Þ, ½gð0;�1=2; 0Þ��1
¼ gð0; 1=2; 0Þ and

½gð0; 1=2; �Þ��1
¼ gð0; 1=2; �Þ. But this F is not fully closed

under inversion either. For example, gð1=2; 1=2; �=4Þ 2 F but

½gð1=2; 1=2; �=4Þ��1
¼ gð�1=21=2; 0;��=4Þ =2 F.

The algebraic properties established in the following section

build on these ideas and will assist in the further mathematical

characterization of the MR problem.

4. Algebraic structure: quasigroup properties of the MR
problem

Though � is a group and G is a group, � is not a normal

subgroup of G (and neither is T). Therefore, unlike the

situation in which T\T ¼ T =T ffi Tn or T \G ¼G=T ffi SOðnÞ,

which are again groups, the right-coset spaces T\G and �\G

are not groups. However, as will be shown here, it is possible

to define a non-associative binary operation for these spaces,

which turns them into quasigroups.

4.1. The quasigroup operation

As demonstrated in the previous section, the choice of F�\G

is not unique. Given any g 2 G and a fixed choice of F�\G � G,

we can define ½g�r 2 F�\G to be such that g ¼ � � ½g�r for some

� 2 �<G. Therefore, we can think of ½��r : G! F�\G as a

mapping that selects one representative of each coset �g that

has the following properties,

½� � g�r ¼ ½g�r 8 � 2 �

½½g�r�r ¼ ½g�r

½½g1�r � ½g2�r�r ¼ ½g1 � ½g2�r�r:

With these three properties, it is possible to define a binary

operation between any two elements ½g1�r; ½g2�r 2 F�\G.

Namely,

½g1�r �̂� ½g2�r¼
:
½½g1�r�½g2�r�r: ð14Þ

This application of �½ �r to the product ½g1�r � ½g2�r in equation

(14) is important to ensure that the result is back inside F�\G.

A right (group) action of G on �\G can be defined as

½g1�r � g2¼
:
½g1 � g2�r: ð15Þ

Then, when this expression is evaluated with ½g2�r 2 F�\G � G

in place of g2 2 G,

½g1�r � ½g2�r ¼ ½g1 � ½g2�r�r

¼ ½½g1�r � ½g2�r�r

¼ ½g1�r �̂� ½g2�r:

The relationships between �, �̂� and � are described by the

commutative diagram below, where id is the identity map, and

id, ½ �r applied to G1 �G2 means that id is applied to G1 and ½ �r
is applied to G2.

4.2. Lack of associativity

If g1; g2 2 F�\G, then g1 ¼ ½g1�r and g2 ¼ ½g2�r. Furthermore,

if in addition g1 � g2 2 F�\G, then ½g1�r �̂� ½g2�r ¼ ½g1 � g2�r ¼

g1 � g2. However, if ½g1�r � ½g2�r =2 F�\G, then an additional ½��r
operation would be required to ensure that ½½g1�r � ½g2�r�r 2

F�\G. And herein lies the reason why motions in F�\G are a

quasigroup rather than a group. Namely, in general

ð½g1�r �̂� ½g2�rÞ �̂� ½g3�r ¼ ½½½g1�r �̂� ½g2�r�r �̂� ½g2�r�r 6¼

½½g1�r �̂� ½½g2�r �̂� ½g2�r�r�r ¼ ½g1�r �̂� ð½g2�r �̂� ½g3�rÞ:

That is, the associative property fails.

Consider an example of this when G ¼ SEð2Þ and � ¼ P1

and F�\X is the unit square with the center at the origin and

hence F�\G is visualized as in Fig. 4(b). If g1 ¼ gð1=4; 0; �=4Þ,

g2 ¼ gð1=2; 0;��=4Þ and g3 ¼ gð0; 1=2; 0Þ, then these motions

all are within the fundamental region and so ½gi�r ¼ gi.

However,

g1 � g2 ¼ g
1

2ð2Þ1=2
þ

1

4
;

1

2ð2Þ1=2
; 0

� �
¼)

½g1 � g2�r ¼ g
1

2ð2Þ1=2
�

3

4
;

1

2ð2Þ1=2
; 0

� �

and
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g2 � g3 ¼ g
1

2ð2Þ1=2
þ

1

2
;

1

2ð2Þ1=2
; �

�

4

� �
¼)

½g2 � g3�r ¼ g
1

2ð2Þ1=2
�

1

2
;

1

2ð2Þ1=2
; �

�

4

� �
:

Therefore,

ð½g1�r �̂� ½g2�rÞ �̂� ½g3�r ¼ ½½g1 � g2�r � g3�r

¼ g
1

2ð2Þ1=2
�

3

4
;

1

2
þ

1

2ð2Þ1=2
; 0

� �� �
r

¼ g
1

2ð2Þ1=2
�

3

4
; �

1

2
þ

1

2ð2Þ1=2
; 0

� �

and

½g1�r �̂� ð½g2�r �̂� ½g3�rÞ ¼ ½g1 � ½g2 � g3�r�r

¼ g
1

4
�

1

2ð2Þ1=2
;

1

2
�

1

2ð2Þ1=2
; 0

� �� �
r

¼ g
1

4
�

1

2ð2Þ1=2
;

1

2
�

1

2ð2Þ1=2
; 0

� �
;

which are clearly not equal.

4.3. Left inverses are not necessarily right inverses

When it comes to computing inverses, we seek an inverse of

½g�r 2 F�\G that is also in F�\G. Unlike a group, there is no a

priori guarantee that the left inverse exists, the right inverse

exists, and that they are the same. Here we show that indeed

left inverses exist, how to compute them, and that in general

the left inverse is not a right inverse.

Since we would always define F�\G such that e 2 F�\G, it

follows that e ¼ ½e�r. Since g ¼ � � ½g�r for some � 2 �,

g�1 ¼ ð½g�rÞ
�1
� ��1 and

e ¼ g�1
� g ¼ ð½g�rÞ

�1
� ½g�r:

Therefore, applying ½��r to both sides gives

½e�r ¼ ½ð½g�rÞ
�1
� ½g�r�r ¼ ½ð½g�rÞ

�1
�r �̂� ½½g�r�r

¼ ½ð½g�rÞ
�1
�r �̂� ½g�r:

But this means that ½ð½g�rÞ
�1
�r is the left inverse of ½g�r with

respect to the operation �̂�. This is true regardless of whether or

not g and ½g�r are equal.

As an example, consider the case when � ¼ P1, G ¼ SEð2Þ

and F�\G is as in Fig. 4(a). If g ¼ gð3=2; 1=2; �=4Þ,

then ½g�r ¼ gð1=2; 1=2; �=4Þ. It is easy to compute

g�1 ¼ gð�21=2; 1=21=2; 7�=4Þ =2 F�\G. Similarly, ð½g�rÞ
�1
¼

gð�1=21=2; 0; 7�=4Þ =2 F�\G. But, by definition, ½ð½g�rÞ
�1
�r ¼

gð1� 1=21=2; 0; 7�=4Þ 2 F�\G. That this serves as a left inverse

is demonstrated as follows:

½ð½g�rÞ
�1
�r �̂� ½g�r ¼ ½gð1� 1=21=2; 0; 7�=4Þ � gð1=2; 1=2; �=4Þ�r

¼ ½gð1; 0; 0Þ 2 P1�r ¼ e:

But this left inverse is not a right inverse:

½g�r �̂� ½ð½g�rÞ
�1
�r ¼ ½gð1=2; 1=2; �=4Þ � gð1� 1=21=2; 0; 7�=4Þ�r

¼ ½gð1=21=2; 1=21=2; 0Þ =2 P1�r 6¼ e:

On the other hand, if � ¼ P1, G ¼ SEð2Þ and F�\G is as in Fig.

4(b), and again g ¼ gð3=2; 1=2; �=4Þ, then ½g�r ¼ gð1=2; 1=2;
�=4Þ. It is easy to compute g�1 ¼ gð�21=2; 1=21=2;��=4Þ

=2 F�\G. Similarly, ð½g�rÞ
�1
¼ gð�1=21=2; 0;��=4Þ =2 F�\G and

½ð½g�rÞ
�1
�r ¼ gð1� 1=21=2; 0;��=4Þ 2 F�\G. That this serves as

a left inverse is demonstrated as before:

½ð½g�rÞ
�1
�r �̂� ½g�r ¼ ½gð1� 1=21=2; 0;��=4Þ � gð1=2; 1=2; �=4Þ�r

¼ ½gð1; 0; 0Þ 2 P1�r ¼ e:

And it still fails to be a right inverse.

In the special case when g; g�1 2 F�\G, it follows that

g ¼ ½g�r and ½g�1�r ¼ g�1. Combining these then gives

g�1 ¼ ð½g�rÞ
�1
¼ ½g�1�r ¼ ½ð½g�rÞ

�1
�r. Furthermore, in this

special case, the left inverses computed above also will be

right inverses. For example, if g ¼ gð1=4; 1=4; �=4Þ and F�\G

is as in Fig. 4(b), then g ¼ ½g�r 2 F�\G and g�1 ¼

gð�1=2ð2Þ1=2; 0;��=4Þ ¼ ½g�1�r 2 F�\G is the same as

½ð½g�rÞ
�1
�r, which serves as both a left and right inverse, since in

this context g � g�1 ¼ g�1 � g ¼ e holds, as usual in a group.

Note that if instead we used F�\G as in Fig. 4(a), then in the

above example g�1 =2 F�\G.

4.4. Solving equations

In any quasigroup the following equations can be solved for

½g�r and ½h�r for any given ½a�r and ½b�r that are in the

quasigroup:

½a�r �̂� ½g�r ¼ ½b�r and ½h�r �̂� ½a�r ¼ ½b�r: ð16Þ

These solutions are denoted as

½g�r ¼ ½a�r\½b�r and ½h�r ¼ ½b�r=½a�r ð17Þ

(where = and \ are division on the right and left, respectively).

But, since the associative law does not hold, we cannot simply

apply the inverse of ½a�r or ½b�r to obtain the answer. Instead,

using the rules established in x4.1,

½a�r �̂� ½g�r ¼ ½b�r¼)½a � ½g�r�r ¼ ½b�r¼)

a � ½g�r ¼ _�� � b¼)½g�r ¼ a�1 � _�� � b;

where _�� is the special element of � chosen to ensure that

½g�r 2 F�\G. Similarly,

½h�r �̂� ½a�r ¼ ½b�r¼)½h � ½a�r�r ¼ ½b�r¼)

h � ½a�r ¼ � � b¼) h ¼ � � b � ð½a�rÞ
�1
¼)

½h�r ¼ ½b � ð½a�rÞ
�1
�r ¼ ½b�r �̂� ½ð½a�rÞ

�1
�r:

Here no special choice of � is required, and when b ¼ e, ½h�r is

simply the left inverse of ½a�r.

5. Quasigroup actions

As stated in x2, the group of rigid-body motions, G, acts on

points in Euclidean space, X, by moving them as x! g � x. So

too, the quasigroup �\G acts on points in �\X to move them to

other points in the same space. However, the usual property of

a group action,

research papers

442 Gregory S. Chirikjian � Mathematical aspects of molecular replacement. I Acta Cryst. (2011). A67, 435–446



ðg1 � g2Þ � x ¼ g1 � ðg2 � xÞ ð18Þ

does not apply for a quasigroup.

If g 2 G and ½g�r 2 F�\G and ½x� 2 F�\X we can define a

(quasigroup) action of �\G on �\X as

½g�r �̂� ½x� ¼
:
½g � ½x��: ð19Þ

This is illustrated in the diagram below.

Note that since

½½x�� ¼ ½x� and ½½g�r�r ¼ ½g�r;

it follows that

½g�r �̂� ½x� ¼ ½½g�r�r �̂� ½x� ¼ ½½g�r � ½x��

and

½½g�r �̂� ½x�� ¼ ½g � ½x��:

Since G acts from the left on X , and since ½x� 2 F�\X � X, it

follows that

½g1 � g2�r � ½x� ¼ ð½g1�r � g2Þ � ½x�:

Then, upon the application of ½�� to both sides,

½g1 � g2�r �̂� ½x� ¼ ½ð½g1�r � g2Þ � ½x��: ð20Þ

Also, combining the properties of group and quasigroup

actions,

½g1 � g2�r �̂� ½x� ¼ ½ðg1 � g2Þ � ½x�� ¼ ½g1 � ðg2 � ½x�Þ�:

This can be written as

ð½g1�r �̂� ½g2�rÞ �̂� ½x� ¼ ½g1 � ðg2 � ½x�Þ�: ð21Þ

And though it would be too much to expect that the properties

of a group action would hold for a quasigroup action, the fact

that

½g1�r �̂� ð½g2�r �̂� ½x�Þ ¼ ½g1�r �̂� ð½g2 � ½x��Þ

means that

½g1�r �̂� ð½g2�r �̂� ½x�Þ ¼ ½g1 � ð½g2 � ½x��Þ�: ð22Þ

Though equations (21) and (22) are not the same in general, in

the special case when ½g2�r � ½x� ¼ ½g2�r �̂� ½x� they will be the

same.

6. Quasigroup isomorphisms and mappings between
fundamental domains

As depicted in Fig. 4, the definition of a fundamental domain

F�\G is not unique. And since the definition of �̂� depends on

how F�\G is defined, it too is not unique. Let F�\G and �̂� denote

an allowable alternative to F�\G and �̂�. When examining

relationships between candidate fundamental domains, it

makes sense to consider allowable mappings of the form

m : ðF�\G; �̂�Þ�!ðF�\G; �̂�Þ: ð23Þ

For example, in addition to the two cases shown in Fig. 4 when

� ¼ P1, valid fundamental domains for P1\G can be obtained

by translating each horizontal slice in those figures by some

continuous xð�Þ and yð�Þ. Hence a continuum of different

fundamental domains can exist that correspond to one coset

space �\G. Corresponding to each choice, ½g�r is replaced by a

different ½g�r ¼ mð½g�rÞ.

From an algebraic perspective, it is interesting to ask when

such domains are equivalent as quasigroups. In other words,

we seek special bijections of the form m : F�\G ! F�\G where

mð½g1�r �̂� ½g2�rÞ ¼ mð½g1�rÞ �̂�mð½g2�rÞ: ð24Þ

Such mappings can be called quasigroup isomorphisms.

The existence of bijections is clear in the example of Fig. 4,

since it is possible to divide up the two fundamental domains

into octants, and generate a mapping by permuting these

octants and gluing them appropriately. However, it is not clear

a priori whether or not such a bijection will preserve the

quasigroup operation in the sense of equation (24).

In contrast, the conjugation of ½g�r by some fixed h 2 G can

be used to define

mhð½g�rÞ ¼
:

h � ½g�r � h�1:

Then if ½g�r 2 �g,

mhð½g�rÞ 2 hð�gÞh�1 ¼ ðh�h�1Þðh � g � h�1Þ

¼ ðh�h�1
Þmhð½g�rÞ

and

mhð½g1�rÞ �mhð½g2�rÞ ¼ h � ½g1�r � ½g2�r � h�1:

Therefore, if we define �̂� by the equality

mhð½g1�rÞ �̂�mhð½g2�rÞ ¼
:

h � ½h�1
�mhð½g1�rÞ �mhð½g2�rÞ � h�r � h�1;

ð25Þ

it is easy to see that

mhð½g1�rÞ �̂�mhð½g2�rÞ ¼ h � ½½g1�r � ½g2�r�r � h�1

¼ mhð½g1�r �̂� ½g2�rÞ:

This is expressed in the following commutative diagram.

In other words, for any fixed h 2 G, ðFh�h�1\G; �̂�Þ is a

quasigroup since ðF�\G; �̂�Þ is, and the above diagram

commutes. But unlike in equation (23) where the quasigroup

corresponds to the same coset space, here the coset spaces are

different since in general � 6¼ h�h�1. But this discussion

Acta Cryst. (2011). A67, 435–446 Gregory S. Chirikjian � Mathematical aspects of molecular replacement. I 443

research papers



becomes relevant to the issue of constructing different

fundamental domains for the same coset space if we restrict

the choice of h such that � ¼ h�h�1. This is achieved easily

by restricting h 2 NGð�Þ, the normalizer of � in G. When

choosing h1; h2 2 NGð�Þ, it follows that

ðmh1
�mh2

Þð½g1�rÞ ¼
:

mh1
ðmh2
ð½g1�rÞÞ ¼ mh1�h2

ð½g1�rÞ ð26Þ

and, therefore, the set of all mappings M ¼ fmh j h 2 NGð�Þg
forms a group under the operation of composition in equation

(26), ðM; �Þ, and this group is isomorphic with CGð�Þ\NGð�Þ
where CGð�Þ is the centralizer of � in G. Recall that NGð�Þ is

the largest subgroup of G in which � is a normal subgroup, and

CGð�Þ is the subgroup of G consisting of all elements that

commute with every element of �.

7. Special properties of projections and translations

Additional algebraic properties result from the special role

that translations play, both in space groups and in continuous

Euclidean motions. These are explored in this section.

7.1. General relationships

When viewed as a set rather than a group, G ¼ SOðnÞ � X .

Then a natural projection operator is proj : G ! X that

simply picks off the translational part of g ¼ ðR; tÞ as

projðgÞ ¼ t. When this projection is applied after multiplying

two group elements, the result is projðg1 � g2Þ ¼ R1t2 þ t1:
This is of the same form as the action in equation (5).

Therefore, we can write the following diagram, which is

equivalent to the equation

projðg1 � g2Þ ¼ g1 � projðg2Þ: ð27Þ

This algebraic property gives G ¼ SEðnÞ the geometric

structure of a trivial principal fiber bundle, which will have

implications for possible geometric interpretations of F�\G,

which will be explored in the second paper in this series.

Until now, no specific choice was made to identify which

representatives of the cosets �g 2 �\G are used to define F�\G.

Such a choice would fix the geometric structure of F�\G. The

general discussion of this is postponed until the second paper

in this series. But the case when � ¼ P1 is now addressed, and

it is closely related to the properties of the projection operator

discussed previously.

7.2. The case when C = P1

Two possible choices for FP1\G when G ¼ SEð2Þ were illu-

strated in Fig. 4. More generally, the choice of FP1\G is partially

constrained by identifying FP1\G with SOðnÞ � FP1\X . This does

not fully define FP1\G because FP1\X can be defined in multiple

ways (for example in Figs. 4a and 4b, this is, respectively, the

unit square contained in the first quadrant and centered at the

origin).

The (partial) definition

FP1\G¼
:

SOðnÞ � FP1\X ð28Þ

is acceptable because P1 has no rotational or screw symmetry

operators, and therefore its action from the left has no effect

on the SOðnÞ part of G ¼ SEðnÞ. Then it is clear that for any

g ¼ ðR; tÞ 2 G, ½g�r ¼ ðR; ½t�Þ 2 FP1\G and

projð½g�rÞ ¼ ½t� ¼ ½projðgÞ�: ð29Þ

Since a pure translation is of the form ðI; tÞ 2 G, it is possible

to compute ½ðI; tÞ�r 2 P1\G. Similarly, a translation can be

identified as a position via the action ðI; tÞ � 0 ¼ t where 0 is

the origin in X ¼ Rn. The projection operator relates ½ðI; tÞ�r
and ½t� as projð½ðI; tÞ�rÞ ¼ ½t� as a special case of equation (29).

In addition, projð½g�r �̂� ½ðI; tÞ�rÞ ¼ ½g�r �̂� ½t�: Note also that

when viewing FP1\G as in equation (28)

projð½g1�r �̂� ½g2�rÞ ¼ projð½g1 � ½g2�r�rÞ ¼ projð½ðR1R2;R1½t2� þ t1Þ�rÞ

¼ projððR1R2; ½R1½t2� þ t1�ÞÞ ¼ ½R1½t2� þ t1�

and

½g1�r �̂� projð½g2�rÞ ¼ ½g1�r �̂� ½t2� ¼ ½g1 � ½t2�� ¼ ½R1½t2� þ t1�:

Equating the above results gives

projð½g1�r �̂� ½g2�rÞ ¼ ½g1�r �̂� projð½g2�rÞ: ð30Þ

These, together with equalities presented earlier in the paper,

lead to the following commutative diagram.

8. Applicability of these concepts to multi-domain MR
problems

This section first reviews the multi-domain molecular repla-

cement problem and then illustrates the applicability of the

algebraic concepts developed earlier in this paper.

8.1. Multi-domain molecular replacement

Consider a multi-domain protein or complex that is known

to consist of N rigid components, each of which has a high

degree of homology to a known protein. Some of these

components might also be homologous to each other, but in

the absence of any evidence otherwise, the domains will be

treated as having different density functions. If the kth body/

domain in the assemblage has density �ðkÞðxÞ when described

in its own body-fixed reference frame, then for some unknown
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set of rigid-body motions g0; g1; g2; . . . ; gN�1 2 G, the density

of the whole unknown structure must be of the form

�ðx; g0; g1; . . . ; gN�1Þ ¼
PN�1

k¼0

�ðkÞðg0; k�1 � xÞ; ð31Þ

where g0;k ¼ g0 � g1 � � � � � gk. Here g1; . . . ; gN�1 are relative

rigid-body motions between sequentially numbered bodies.

Such a numbering does not require that the bodies form a

kinematic chain, though such topological constraints naturally

limit the volume of the search space.

If the assemblage/complex/multi-body protein that is

formed from these individual domains/bodies is rigid, then

symmetry mates in the crystal will all have the same values of

g1; g2; . . . ; gN�1 2 G. Here g0 takes the place of g in the earlier

discussion of single-body molecular replacement, and the

density becomes

��\Xðx; g0; g1; . . . ; gN�1Þ ¼
P
�2�

�ð��1 � x; g0; g1; . . . ; gN�1Þ

¼
P
�2�

�ðx; � � g0; g1; . . . ; gN�1Þ:

Cost functions analogous to equation (12) follow naturally,

but now become functions of g0; g1; . . . ; gN�1, and therefore

represent a 6N-dimensional search. Direct grid searches of

very high dimensional spaces will always be inadvisable, no

matter how rapidly computer technology advances. However,

by taking advantage of the quasigroup structure of this search

space, gradient descent methods may be appropriate. Whereas

such methods are inadvisable when seeking optima in the

rotation function (since there is tremendous ‘noise’ that

results from discarding non-pure-rotation terms), the high-

dimensional search space is far less noisy since the high-

dimensional model that is matched to the diffraction pattern

(or in real space, the Patterson function) has built into it a

higher-fidelity model where all variables are simultaneously

present, rather than sequential searches over each domain.

8.2. Applicability of quasigroup properties

The properties of quasigroups of motions and their actions

on points in an asymmetric unit, as well as actions of motion

groups on quasigroups, will play a role in various aspects of

MR that will be explored in later papers in this series. These

include modeling motional smearing such as is the case in

static disorder and thermal motion in crystals, and the

formulation of optimization problems such as minimizing the

cost in equation (12). Such applications involve both the

algebraic properties discussed here, and the geometric ones

that will be described in the second paper in this series.

Nevertheless, it is possible to illustrate at this stage how the

concepts of ½x�, ½g�r, F�\G, F�\X , �, � and � interact naturally in a

particular MR-related problem, as discussed below.

Consider a macromolecular structure consisting of two rigid

domains. Let �ð1ÞðxÞ and �ð2ÞðxÞ denote the densities of these

bodies, each relative to its own body-fixed reference frame. In

the case when these locally defined densities have their body-

fixed frames coincident with the identity reference frame e,

then �ðkÞðxÞ ¼ �ðkÞðx; eÞ for k ¼ 1; 2. If the frame attached to

body 2 has a position and orientation of g2 relative to the

frame attached to body 1, then the density function for the

composite structure (when the reference frame attached to

body 1 is the identity) will be

�ðxÞ ¼ �ð1ÞðxÞ þ �ð2Þðg�1
2 � xÞ:

Then, if body 1 is itself moved and body 2 retains its relative

spatial relationship to body 1, the result will be

�0ðxÞ ¼
:
�ðg�1

1 � xÞ

¼ �ð1Þðg�1
1 � xÞ þ �

ð2Þ½g�1
2 � ðg

�1
1 � xÞ�

¼ �ð1Þðg�1
1 � xÞ þ �

ð2Þ
½ðg1 � g2Þ

�1
� x� ð32Þ

¼ �ð1Þðx; g1Þ þ �
ð2Þðx; g1 � g2Þ: ð33Þ

Using the notation for a periodic density from x3.1 and the

concept of the action � from x5, the resulting density of a

crystal consisting of two-domain macromolecules will be

�0�\XðxÞ ¼ �
ð1Þ
�\Xð½x�; ½g1�rÞ þ �

ð2Þ
�\Xð½x�; ½g1 � g2�rÞ:

Using the algebraic rules established earlier, the second term

can be written as

�ð2Þ�\Xð½x�; ½g1 � g2�rÞ ¼ �
ð2Þ
�\Xð½x�; ½g1�r � g2Þ:

The extension to the multi-domain case follows in a similar

way, and does not require the introduction of new concepts of

action.

Unlike the step from equations (32) to (33), which is valid in

the context of group actions, in general

�ð2Þ�\Xð½x�; ½g1 � g2�rÞ 6¼ �
ð2Þ
�\Xð½ð½g1 � g2�rÞ

�1
�r �̂� ½x�; ½e�rÞ:

This is because, in the case of group actions, the solution to

x ¼ g � y is y ¼ g�1 � x. But in the quasigroup case, the solution

to ½x� ¼ ½g�r �̂� ½y� is not ½y� ¼ ½ð½g�rÞ
�1
�r �̂� ½x�: But a solution can

be constructed using the algebraic concepts discussed earlier.

Namely, if ½x� ¼ projðI; ½x�Þ, then

½x� ¼ ½g�r �̂� ½y� () ðI; ½x�Þ ¼ ½g�r �̂� ðI; ½y�Þ

and

ðI; ½y�Þ ¼ ½g�r\ðI; ½x�Þ ¼) ½y� ¼ projð½g�r\ðI; ½x�ÞÞ:

Hence

�ð1Þ�\Xð½x�; ½g1�rÞ ¼ �
ð1Þ
�\Xðprojð½g�r\ðI; ½x�ÞÞ; ½e�rÞ;

and similarly for �ð2Þ�\Xð½x�; ½g1 � g2�rÞ. Therefore, the algebraic

constructions presented earlier provide a tool for manip-

ulating different descriptions of densities that arise in MR

applications.

9. Conclusions

The algebraic structure of the molecular replacement problem

in macromolecular crystallography has been articulated here.

This includes enumerating the quasigroup structure of the

coset space �\G, where � is the space group of the crystal and

G is the continuous group of rigid-body motions. Equipped
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with these properties of the space F�\G ffi �\G articulated here,

it becomes possible to formulate codes for searching the space

of motions of macromolecules in asymmetric units in a way

that is not subject to the arbitrariness of a choice of coordi-

nates such as Euler angles, and the inescapable distortions and

singularities that result from coordinate-dependent approa-

ches. Geometric and numerical aspects of the formulation

presented here will be investigated in follow-on papers. In

such applications, it is important to fix a geometric inter-

pretation of F�\G. It will be shown that the algebraic concept of

projð�Þ discussed here provides insights into concrete choices

for F�\G, and the mappings and quasigroup isomorphisms

discussed here provide the means to convert between different

choices for these domains.
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